Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jan 02 2023 12:30:47
%S 3,13,34,84,203,493,1186,2876,6915,16765,40306,97716,234923,569533,
%T 1369234,3319484,7980483,19347373,46513666
%N Numbers k such that 30 plus the k-th triangular number is a perfect square.
%H F. T. Adams-Watters, <a href="http://list.seqfan.eu/oldermail/seqfan/2009-October/002504.html">SeqFan Discussion</a>, Oct 2009
%F {k: 30+k*(k+1)/2 in A000290}.
%F Conjectures: (Start)
%F a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
%F G.f.: x*(-3-10*x-3*x^2+10*x^3+4*x^4)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
%F G.f.: ( 8 + (-5-2*x)/(x^2+2*x-1) + (12+29*x)/(x^2-2*x-1) + 1/(x-1) )/2. (End)
%e 3, 13, 34, and 84 are terms:
%e 3* (3+1)/2 + 30 = 6^2,
%e 13*(13+1)/2 + 30 = 11^2,
%e 34*(34+1)/2 + 30 = 25^2,
%e 84*(84+1)/2 + 30 = 60^2.
%t Position[Accumulate[Range[8*10^6]],_?(IntegerQ[Sqrt[#+30]]&)]//Flatten (* _Harvey P. Dale_, May 30 2016 *)
%t Join[{3, 13}, Select[Range[0, 10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 30 &]] (* _G. C. Greubel_, Sep 03 2016 *)
%o (PARI) {for (n=0, 10^9, if ( issquare(n*(n+1)\2 + 30), print1(n, ", ") ) );}
%Y Cf. A000217, A000290, A006451.
%K nonn,less
%O 1,1
%A _R. J. Mathar_, Oct 18 2009