login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154154
Numbers k such that 30 plus the k-th triangular number is a perfect square.
3
3, 13, 34, 84, 203, 493, 1186, 2876, 6915, 16765, 40306, 97716, 234923, 569533, 1369234, 3319484, 7980483, 19347373, 46513666
OFFSET
1,1
LINKS
F. T. Adams-Watters, SeqFan Discussion, Oct 2009
FORMULA
{k: 30+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-3-10*x-3*x^2+10*x^3+4*x^4)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 8 + (-5-2*x)/(x^2+2*x-1) + (12+29*x)/(x^2-2*x-1) + 1/(x-1) )/2. (End)
EXAMPLE
3, 13, 34, and 84 are terms:
3* (3+1)/2 + 30 = 6^2,
13*(13+1)/2 + 30 = 11^2,
34*(34+1)/2 + 30 = 25^2,
84*(84+1)/2 + 30 = 60^2.
MATHEMATICA
Position[Accumulate[Range[8*10^6]], _?(IntegerQ[Sqrt[#+30]]&)]//Flatten (* Harvey P. Dale, May 30 2016 *)
Join[{3, 13}, Select[Range[0, 10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 30 &]] (* G. C. Greubel, Sep 03 2016 *)
PROG
(PARI) {for (n=0, 10^9, if ( issquare(n*(n+1)\2 + 30), print1(n, ", ") ) ); }
CROSSREFS
KEYWORD
nonn,less
AUTHOR
R. J. Mathar, Oct 18 2009
STATUS
approved