login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153745
Numbers k such that the number of digits d in k^2 is not prime and for each factor f of d the sum of the d/f digit groupings in k^2 of size f is a square.
10
1, 2, 3, 39, 60, 86, 90, 321, 347, 401, 3387, 3414, 3578, 3900, 4767, 6000, 6549, 6552, 6744, 6780, 6783, 7387, 7862, 7889, 8367, 8598, 8600, 8773, 8898, 9000, 9220, 9884, 9885, 10000, 10001, 10002, 10003, 10004, 10005, 10010, 10011, 10012, 10013, 10020
OFFSET
1,2
COMMENTS
This sequence is a subsequence of A061910.
FORMULA
a(n) = sqrt(A258660(n)). - Doug Bell, Jun 15 2015
EXAMPLE
39^2 = 1521; 1+5+2+1 = 9 = 3^2 and 15+21 = 36 = 6^2.
321^2 = 103041; 1+0+3+0+4+1 = 9 = 3^2; 10+30+41 = 81 = 9^2; and 103+041 = 144 = 12^2.
PROG
(PARI) isok(n) = {my(d = digits(n^2)); if (! isprime(#d), my(dd = divisors(#d)); for (k=1, #dd, my(tg = 10^dd[k]); my(s = 0); my(m = n^2); for (i=1, #d/dd[k], s += m % tg; m = m\tg; ); if (! issquare(s), return(0)); ); return (1); ); } \\ Michel Marcus, Jun 06 2015
(Python)
from sympy import divisors
from gmpy2 import is_prime, isqrt_rem, isqrt, is_square
A153745_list = []
for l in range(1, 20):
....if not is_prime(l):
........fs = divisors(l)
........a, b = isqrt_rem(10**(l-1))
........if b > 0:
............a += 1
........for n in range(a, isqrt(10**l-1)+1):
............ns = str(n**2)
............for g in fs:
................y = 0
................for h in range(0, l, g):
....................y += int(ns[h:h+g])
................if not is_square(y):
....................break
............else:
................A153745_list.append(n) # Chai Wah Wu, Jun 08 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Doug Bell, Dec 31 2008
EXTENSIONS
Data corrected by Doug Bell, Jan 19 2009
Name corrected by Doug Bell, Jun 06 2015
STATUS
approved