login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153656
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +3)*prime(j)*T(n-2, k-1) with j=9, read by rows.
14
2, 23, 23, 2, 1054, 2, 2, 12165, 12165, 2, 2, 13133, 533412, 13133, 2, 2, 14101, 6422240, 6422240, 14101, 2, 2, 15069, 12779580, 270482476, 12779580, 15069, 2, 2, 16037, 19605432, 3385203976, 3385203976, 19605432, 16037, 2, 2, 17005, 26899796, 9577346548, 137413443860, 9577346548, 26899796, 17005, 2
OFFSET
1,1
FORMULA
T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +3)*prime(j)*T(n-2, k-1) with j=9.
From G. C. Greubel, Mar 06 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (2,3,9).
Sum_{k=0..n} T(n,k,p,q,j) = 2*prime(j)^(n-1), for (p,q,j)=(2,3,9), = 2*A009967(n-1). (End)
EXAMPLE
Triangle begins as:
2;
23, 23;
2, 1054, 2;
2, 12165, 12165, 2;
2, 13133, 533412, 13133, 2;
2, 14101, 6422240, 6422240, 14101, 2;
2, 15069, 12779580, 270482476, 12779580, 15069, 2;
2, 16037, 19605432, 3385203976, 3385203976, 19605432, 16037, 2;
2, 17005, 26899796, 9577346548, 137413443860, 9577346548, 26899796, 17005, 2;
MATHEMATICA
T[n_, k_, p_, q_, j_]:= T[n, k, p, q, j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1, k, p, q, j] + T[n-1, k-1, p, q, j] + (p*j+q)*Prime[j]*T[n-2, k-1, p, q, j] ]]];
Table[T[n, k, 2, 3, 9], {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Mar 06 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n, k, p, q, j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n, j)
elif (k==1 or k==n): return 2
else: return T(n-1, k, p, q, j) + T(n-1, k-1, p, q, j) + (p*j+q)*nth_prime(j)*T(n-2, k-1, p, q, j)
flatten([[T(n, k, 2, 3, 9) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 06 2021
(Magma)
f:= func< n, j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n, k, p, q, j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n, j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1, k, p, q, j) + T(n-1, k-1, p, q, j) + (p*j+q)*NthPrime(j)*T(n-2, k-1, p, q, j);
end if; return T;
end function;
[T(n, k, 2, 3, 9): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 06 2021
CROSSREFS
Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), this sequence (2,3,9), A153657 (2,7,10).
Cf. A009967 (powers of 23).
Sequence in context: A128365 A326954 A153654 * A242037 A233692 A084323
KEYWORD
nonn,tabl,easy,less
AUTHOR
Roger L. Bagula, Dec 30 2008
EXTENSIONS
Edited by G. C. Greubel, Mar 06 2021
STATUS
approved