login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153520
Triangle T(n,k) = T(n-1, k) + T(n-1, k-1) + 7*T(n-2, k-1), read by rows.
14
2, 7, 7, 2, 94, 2, 2, 341, 341, 2, 2, 357, 1340, 357, 2, 2, 373, 4084, 4084, 373, 2, 2, 389, 6956, 17548, 6956, 389, 2, 2, 405, 9956, 53092, 53092, 9956, 405, 2, 2, 421, 13084, 111740, 229020, 111740, 13084, 421, 2, 2, 437, 16340, 194516, 712404, 712404, 194516, 16340, 437, 2
OFFSET
1,1
FORMULA
T(n,k) = T(n-1, k) + T(n-1, k-1) + 7*T(n-2, k-1).
From G. C. Greubel, Mar 04 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (0,1,4).
Sum_{k=1..n} T(n,k,p,q,j) = 2*(prime(j)-3)*[n=1] -2*prime(j)*(prime(j)-3)*[n=2] +2*prime(j)^2*(i*sqrt(prime(j)))^(n-3)*(ChebyshevU(n-3, -i/Sqrt(prime(j))) -((prime(j) -2)*i/sqrt(prime(j)))*ChebyshevU(n-4, -i/sqrt(prime(j)))) for (p,q,j)=(0,1,4).
Row sums satisfy the recurrence relation S(n) = 2*S(n-1) + prime(j)*S(n-2), for n > 4, with S(1) = 2, S(2) = 2*prime(j), S(3) = 2*prime(j)^2, S(4) = 2*prime(j)^3 with j=4. (End)
EXAMPLE
Triangle begins as:
2;
7, 7;
2, 94, 2;
2, 341, 341, 2;
2, 357, 1340, 357, 2;
2, 373, 4084, 4084, 373, 2;
2, 389, 6956, 17548, 6956, 389, 2;
2, 405, 9956, 53092, 53092, 9956, 405, 2;
2, 421, 13084, 111740, 229020, 111740, 13084, 421, 2;
2, 437, 16340, 194516, 712404, 712404, 194516, 16340, 437, 2;
MATHEMATICA
T[n_, k_, p_, q_, j_]:= T[n, k, p, q, j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1, k, p, q, j] + T[n-1, k-1, p, q, j] + (p*j+q)*Prime[j]*T[n-2, k-1, p, q, j] ]]];
Table[T[n, k, 0, 1, 4], {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Mar 04 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n, k, p, q, j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n, j)
elif (k==1 or k==n): return 2
else: return T(n-1, k, p, q, j) + T(n-1, k-1, p, q, j) + (p*j+q)*nth_prime(j)*T(n-2, k-1, p, q, j)
flatten([[T(n, k, 0, 1, 4) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 04 2021
(Magma)
f:= func< n, j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n, k, p, q, j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n, j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1, k, p, q, j) + T(n-1, k-1, p, q, j) + (p*j+q)*NthPrime(j)*T(n-2, k-1, p, q, j);
end if; return T;
end function;
[T(n, k, 0, 1, 4): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 04 2021
CROSSREFS
Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), this sequence (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), A153657 (2,7,10).
Sequence in context: A138341 A374525 A374526 * A153649 A020770 A177003
KEYWORD
nonn,tabl,easy,less
AUTHOR
Roger L. Bagula, Dec 28 2008
EXTENSIONS
Edited by G. C. Greubel, Mar 04 2021
STATUS
approved