OFFSET
1,2
COMMENTS
It seems numbers of the form k^n*(k^n+1)+1 with n > 0, k > 1 may be primes only if n has the form 3^j. When n is even, k^(4*n)+k^(2*n)+1=(k^(2*n)+1)^2-(k^n)^2=(k^(2*n)+k^n+1)*(k^(2*n)-k^n+1) so composite. But why if n odd > 3 and not a power of 3, k^n*(k^n+1)+1 is always composite?
LINKS
Pierre CAMI, Table of n, a(n) for n=1,...,9439
MATHEMATICA
k81Q[k_]:=Module[{k81=k^81}, PrimeQ[k81(k81+1)+1]]; Select[Range[9000], k81Q] (* Harvey P. Dale, Aug 28 2011 *)
Select[Range[9000], PrimeQ[(#^81 (#^81 + 1)) + 1] &] (* Vincenzo Librandi, Jan 17 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Pierre CAMI, Dec 26 2008
STATUS
approved