login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153441 Numbers k such that k^27*(k^27+1)+1 is prime. 6
1, 21, 50, 77, 153, 191, 194, 311, 405, 440, 462, 557, 638, 659, 690, 746, 852, 887, 944, 945, 1140, 1326, 1344, 1452, 1463, 1607, 1632, 1652, 1659, 1683, 1710, 1788, 1812, 1851, 1925, 1943, 1992, 2157, 2294, 2309, 2352, 2402, 2621, 2687, 2700, 2733, 2756 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

It seems numbers of the form k^n*(k^n+1)+1 with n > 0, k > 1 may be primes only if n has the form 3^j. When n is even, k^(4*n)+k^(2*n)+1=(k^(2*n)+1)^2-(k^n)^2=(k^(2*n)+k^n+1)*(k^(2*n)-k^n+1) so composite. But why if n odd > 3 and not a power of 3, k^n*(k^n+1)+1 is always composite ??

LINKS

Pierre CAMI, Table of n, a(n) for n=1,...,37719

PROG

(PARI) isok(k)  = isprime(k^27*(k^27+1)+1); \\ Michel Marcus, Sep 20 2019

CROSSREFS

Cf. A153438.

Sequence in context: A141556 A147281 A130062 * A235884 A053178 A166150

Adjacent sequences:  A153438 A153439 A153440 * A153442 A153443 A153444

KEYWORD

nonn

AUTHOR

Pierre CAMI, Dec 26 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 7 09:34 EST 2021. Contains 341869 sequences. (Running on oeis4.)