|
|
A153435
|
|
Numbers with 2n binary digits where every run length is 2, written in binary.
|
|
8
|
|
|
11, 1100, 110011, 11001100, 1100110011, 110011001100, 11001100110011, 1100110011001100, 110011001100110011, 11001100110011001100, 1100110011001100110011, 110011001100110011001100
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A043291 written in base 2.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..200
Index entries for linear recurrences with constant coefficients, signature (100,1,-100).
|
|
FORMULA
|
From Colin Barker, Apr 19 2014: (Start)
a(n) = (-101-99*(-1)^n+2^(3+2*n)*25^(1+n))/1818.
a(n) = 100*a(n-1)+a(n-2)-100*a(n-3).
G.f.: 11*x / ((x-1)*(x+1)*(100*x-1)).(End).
|
|
EXAMPLE
|
n ... a(n) ....... A043291(n)
1 ... 11 ............. 3
2 ... 1100 .......... 12
3 ... 110011 ........ 51
4 ... 11001100 ..... 204
5 ... 1100110011 ... 819
|
|
MAPLE
|
A153435:=n->(-101-99*(-1)^n+2^(3+2*n)*25^(1+n))/1818; seq(A153435(n), n=1..20); # Wesley Ivan Hurt, Apr 19 2014
|
|
MATHEMATICA
|
Table[(-101 - 99*(-1)^n + 2^(3 + 2*n)*25^(1 + n))/1818, {n, 20}] (* Wesley Ivan Hurt, Apr 19 2014 *)
CoefficientList[Series[11/((x - 1) (x + 1) (100 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 20 2014 *)
|
|
PROG
|
(PARI) Vec(11*x / ((x-1)*(x+1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Apr 19 2014
|
|
CROSSREFS
|
Cf. A043291.
Sequence in context: A126197 A090814 A319424 * A266787 A109227 A133342
Adjacent sequences: A153432 A153433 A153434 * A153436 A153437 A153438
|
|
KEYWORD
|
easy,nonn,base
|
|
AUTHOR
|
Omar E. Pol, Dec 26 2008
|
|
STATUS
|
approved
|
|
|
|