|
|
A153352
|
|
K-bit primes p such that p-2^i and p+2^i are composite for 0<=i<=K-1.
|
|
5
|
|
|
1973, 3181, 3967, 4889, 8363, 8923, 11437, 12517, 14489, 19583, 19819, 21683, 21701, 21893, 22147, 22817, 24943, 27197, 27437, 28057, 29101, 34171, 34537, 34919, 35201, 35437, 36151, 38873, 41947, 42169, 42533, 42943, 43103, 43759
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Sun showed that the sequence is of positive density in the primes; in particular, of relative density >= 7.9 * 10^-29 = 1/phi(66483034025018711639862527490).
Terry Tao gives this sequence explicitly (p. 1) and generalizes Sun's result.
|
|
LINKS
|
|
|
EXAMPLE
|
a(1)=1973 because 1973 has 11 bits, and 1973 +-1, 1973 +-2, 1973 +-4, 1973 +-8, 1973 +-16, 1973 +-32, 1973 +-64, 1973 +-128, 1973 +-256, 1973 +-512, and 1973 +-2^10 are all composite.
|
|
MATHEMATICA
|
cmpQ[p_]:=Module[{c=2^Range[0, (IntegerLength[p, 2]-1)]}, AllTrue[Flatten[p+{c, -c}], CompositeQ]]; Select[Prime[Range[5000]], cmpQ] (* Harvey P. Dale, Jun 04 2023 *)
|
|
PROG
|
(PARI)f(p)={v=binary(p); k=#v; for(i=0, k-1, if(isprime(p+2^i)||isprime(p-2^i), return(0))); return(1)}; forprime(p=2, 43759, if(f(p), print1(p, ", "))) \\ Washington Bomfim, Jan 18 2011
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|