login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Designed symmetrical sequence with 2*3^n row sum and term: row(n)=3^n; f(n,m) = Floor[(m/Prime[n])*row(n)/2].
0

%I #2 Mar 30 2012 17:34:28

%S 2,3,3,2,14,2,2,25,25,2,2,10,138,10,2,2,22,219,219,22,2,2,56,112,1118,

%T 112,56,2,2,128,256,1801,1801,256,128,2,2,344,690,1034,8982,1034,690,

%U 344,2,2,854,1710,2566,14551,14551,2566,1710,854,2,2,2036,4072,6108

%N Designed symmetrical sequence with 2*3^n row sum and term: row(n)=3^n; f(n,m) = Floor[(m/Prime[n])*row(n)/2].

%C This kind of 2*3^n row sum sequence is an effort to get the Sierpinski carpet scale three

%C level of symmetry into a triangular/ binomial like sequence.

%F row(n)=3^n;

%F f(n,m) = Floor[(m/Prime[n])*row(n)/2].

%e {2},

%e {3, 3},

%e {2, 14, 2},

%e {2, 25, 25, 2},

%e {2, 10, 138, 10, 2},

%e {2, 22, 219, 219, 22, 2},

%e {2, 56, 112, 1118, 112, 56, 2},

%e {2, 128, 256, 1801, 1801, 256, 128, 2},

%e {2, 344, 690, 1034, 8982, 1034, 690, 344, 2},

%e {2, 854, 1710, 2566, 14551, 14551, 2566, 1710, 854, 2},

%e {2, 2036, 4072, 6108, 8144, 77374, 8144, 6108, 4072, 2036, 2}

%t Clear[v, n, row, f]; row[n_] = 3^n;

%t f[n_, m_] = Floor[(m/Prime[n])*row[n]/2]; v[0] = {1}; v[1] = {3/2, 3/2};

%t v[n_] := v[n] = If[Mod[n, 2] == 0, Join[{1}, Table[ f[n, m], {m, 1,Floor[n/2] - 1}], {row[n] - 2*Sum[ f[n,m], {m, 1, Floor[n/2] - 1}] - 2}, Table[ f[n, m], {m, Floor[n/2] - 1,1, -1}], {1}],

%t Join[{1}, Table[ f[n, m], {m, 1, Floor[n/2] - 1}], {row[n]/2 - Sum[ f[n, m], {m, 1, Floor[n/2] - 1}] - 1, row[n]/2 - Sum[ f[n, m], {m, 1, Floor[n/2] - 1}] - 1}, Table[ f[n, m], {m, Floor[n/2] - 1, 1, -1}], {1}]];

%t Table[FullSimplify[Floor[2*v[n]]], {n, 0, 10}];

%t Flatten[%]

%K nonn,uned,tabl

%O 0,1

%A _Roger L. Bagula_, Dec 23 2008