login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153290
Designed symmetrical sequence with 2*3^n row sum and term: row(n)=3^n; f(n,m) = Floor[(m/Prime[n])*row(n)/2].
0
2, 3, 3, 2, 14, 2, 2, 25, 25, 2, 2, 10, 138, 10, 2, 2, 22, 219, 219, 22, 2, 2, 56, 112, 1118, 112, 56, 2, 2, 128, 256, 1801, 1801, 256, 128, 2, 2, 344, 690, 1034, 8982, 1034, 690, 344, 2, 2, 854, 1710, 2566, 14551, 14551, 2566, 1710, 854, 2, 2, 2036, 4072, 6108
OFFSET
0,1
COMMENTS
This kind of 2*3^n row sum sequence is an effort to get the Sierpinski carpet scale three
level of symmetry into a triangular/ binomial like sequence.
FORMULA
row(n)=3^n;
f(n,m) = Floor[(m/Prime[n])*row(n)/2].
EXAMPLE
{2},
{3, 3},
{2, 14, 2},
{2, 25, 25, 2},
{2, 10, 138, 10, 2},
{2, 22, 219, 219, 22, 2},
{2, 56, 112, 1118, 112, 56, 2},
{2, 128, 256, 1801, 1801, 256, 128, 2},
{2, 344, 690, 1034, 8982, 1034, 690, 344, 2},
{2, 854, 1710, 2566, 14551, 14551, 2566, 1710, 854, 2},
{2, 2036, 4072, 6108, 8144, 77374, 8144, 6108, 4072, 2036, 2}
MATHEMATICA
Clear[v, n, row, f]; row[n_] = 3^n;
f[n_, m_] = Floor[(m/Prime[n])*row[n]/2]; v[0] = {1}; v[1] = {3/2, 3/2};
v[n_] := v[n] = If[Mod[n, 2] == 0, Join[{1}, Table[ f[n, m], {m, 1, Floor[n/2] - 1}], {row[n] - 2*Sum[ f[n, m], {m, 1, Floor[n/2] - 1}] - 2}, Table[ f[n, m], {m, Floor[n/2] - 1, 1, -1}], {1}],
Join[{1}, Table[ f[n, m], {m, 1, Floor[n/2] - 1}], {row[n]/2 - Sum[ f[n, m], {m, 1, Floor[n/2] - 1}] - 1, row[n]/2 - Sum[ f[n, m], {m, 1, Floor[n/2] - 1}] - 1}, Table[ f[n, m], {m, Floor[n/2] - 1, 1, -1}], {1}]];
Table[FullSimplify[Floor[2*v[n]]], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A304311 A175393 A338307 * A153516 A153311 A153312
KEYWORD
nonn,uned,tabl
AUTHOR
Roger L. Bagula, Dec 23 2008
STATUS
approved