login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime numbers p such that 2p+1, 4p+1, 8p+1, 10p+1, 14p+1 and 16p+1 are all composite numbers.
1

%I #13 Aug 10 2019 04:54:26

%S 197,223,227,229,257,263,283,311,317,379,383,389,457,461,463,467,521,

%T 541,569,607,661,701,751,773,787,839,859,863,881,887,907,971,991,1051,

%U 1061,1091,1153,1163,1171,1181,1213,1217,1277,1283,1301,1319,1321,1373

%N Prime numbers p such that 2p+1, 4p+1, 8p+1, 10p+1, 14p+1 and 16p+1 are all composite numbers.

%C Related to Legendre's contribution to Fermat's last theorem: the first case of Fermat's last theorem is true only if the Diophantine equation x^n + y^n = z^n has integer solutions x,y,z where n is prime such that gcd(n, xyz) = 1, then n >= 197.

%D A. E. Bojarincev, Asymptotic expressions for the n-th composite number, Univ. Mat. Zap. 6:21-43 (1967). - In Russian.

%D J. M. De Koninck, Ces nombres qui nous fascinent, Ellipses, 2008, p. 59.

%D Sampson, J.H. "Sophie Germain and the theory of numbers," Arch. Hist. Exact Sci. 41 (1990), 157-161.

%H Amiram Eldar, <a href="/A152625/b152625.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FermatsLastTheorem.html">Fermat's Last Theorem</a>

%e With p=197 we obtain the composite numbers 2p+1 = 5*79, 4p+1 = 3*263, 8p+1 = 19*83, 10p+1 = 27*73, 14p+1 = 31*89 and 16p+1 = 3*1051.

%p for p from 1 to 2000 do: if type(p,prime)=true and type(2*p+1,prime)=false and type(4*p+1,prime)=false and type(8*p+1,prime)=false and type(10*p+1,prime)=false and type(14*p+1,prime)=false and type(16*p+1,prime)=false then print(p):else fi:od:

%t aQ[p_] := PrimeQ[p] && AllTrue[{2 p + 1, 4 p + 1, 8 p + 1, 10 p + 1, 14 p + 1, 16 p + 1}, CompositeQ]; Select[Range[1400], aQ] (* _Amiram Eldar_, Aug 10 2019 *)

%K nonn

%O 1,1

%A _Michel Lagneau_, Apr 04 2010