login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152625
Prime numbers p such that 2p+1, 4p+1, 8p+1, 10p+1, 14p+1 and 16p+1 are all composite numbers.
1
197, 223, 227, 229, 257, 263, 283, 311, 317, 379, 383, 389, 457, 461, 463, 467, 521, 541, 569, 607, 661, 701, 751, 773, 787, 839, 859, 863, 881, 887, 907, 971, 991, 1051, 1061, 1091, 1153, 1163, 1171, 1181, 1213, 1217, 1277, 1283, 1301, 1319, 1321, 1373
OFFSET
1,1
COMMENTS
Related to Legendre's contribution to Fermat's last theorem: the first case of Fermat's last theorem is true only if the Diophantine equation x^n + y^n = z^n has integer solutions x,y,z where n is prime such that gcd(n, xyz) = 1, then n >= 197.
REFERENCES
A. E. Bojarincev, Asymptotic expressions for the n-th composite number, Univ. Mat. Zap. 6:21-43 (1967). - In Russian.
J. M. De Koninck, Ces nombres qui nous fascinent, Ellipses, 2008, p. 59.
Sampson, J.H. "Sophie Germain and the theory of numbers," Arch. Hist. Exact Sci. 41 (1990), 157-161.
LINKS
Eric Weisstein's World of Mathematics, Fermat's Last Theorem
EXAMPLE
With p=197 we obtain the composite numbers 2p+1 = 5*79, 4p+1 = 3*263, 8p+1 = 19*83, 10p+1 = 27*73, 14p+1 = 31*89 and 16p+1 = 3*1051.
MAPLE
for p from 1 to 2000 do: if type(p, prime)=true and type(2*p+1, prime)=false and type(4*p+1, prime)=false and type(8*p+1, prime)=false and type(10*p+1, prime)=false and type(14*p+1, prime)=false and type(16*p+1, prime)=false then print(p):else fi:od:
MATHEMATICA
aQ[p_] := PrimeQ[p] && AllTrue[{2 p + 1, 4 p + 1, 8 p + 1, 10 p + 1, 14 p + 1, 16 p + 1}, CompositeQ]; Select[Range[1400], aQ] (* Amiram Eldar, Aug 10 2019 *)
CROSSREFS
Sequence in context: A296895 A171383 A182572 * A082246 A159809 A345551
KEYWORD
nonn
AUTHOR
Michel Lagneau, Apr 04 2010
STATUS
approved