OFFSET
0,3
COMMENTS
There are simple linear recurrences for this sequence and several related ones. The general signature is (0, p^2+1, 0, -p^2), where p is the prime in the numerator of the formula (here p = 11). The recurrence can be verified by substituting the definition in the recurrence (cf. the "simplify" statement in the Maple code, below). - Georg Fischer, Oct 20 2024
LINKS
Ray Chandler, Table of n, a(n) for n = 0..961
Index entries for linear recurrences with constant coefficients, signature (0, 122, 0, -121)
FORMULA
a(n) = -121*a(n-4) + 122*a(n-2). - Georg Fischer, Oct 19 2024
MAPLE
a := proc(n): (11^n - 1)/(5*2^(3 - 2*(n mod 2))): end: seq(a(n), n=0..22);
simplify(-121*a(n-4)+122*a(n-2)-a(n)) = 0; # Georg Fischer, Oct 19 2024
MATHEMATICA
a[n_] := (11^n - 1)/(5*2^(3 - 2*Mod[n, 2]));
Table[a[n], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Dec 04 2008
STATUS
approved