login
A152435
a(n) = (11^n - 1)/(5*2^(3 - 2*(n mod 2))).
1
0, 1, 3, 133, 366, 16105, 44289, 1948717, 5358972, 235794769, 648435615, 28531167061, 78460709418, 3452271214393, 9493745839581, 417724816941565, 1148743246589304, 50544702849929377, 138997932837305787, 6115909044841454629, 16818749873314000230, 740024994425816010121, 2035068734670994027833
OFFSET
0,3
COMMENTS
There are simple linear recurrences for this sequence and several related ones. The general signature is (0, p^2+1, 0, -p^2), where p is the prime in the numerator of the formula (here p = 11). The recurrence can be verified by substituting the definition in the recurrence (cf. the "simplify" statement in the Maple code, below). - Georg Fischer, Oct 20 2024
FORMULA
a(n) = -121*a(n-4) + 122*a(n-2). - Georg Fischer, Oct 19 2024
MAPLE
a := proc(n): (11^n - 1)/(5*2^(3 - 2*(n mod 2))): end: seq(a(n), n=0..22);
simplify(-121*a(n-4)+122*a(n-2)-a(n)) = 0; # Georg Fischer, Oct 19 2024
MATHEMATICA
a[n_] := (11^n - 1)/(5*2^(3 - 2*Mod[n, 2]));
Table[a[n], {n, 0, 30}]
CROSSREFS
Cf. A152298 (p=3), A152417 (p=5), A152418 (p=7), this sequence (p=11), A152436 (p=13), A152437 (p=17), A152438 (p=19).
Sequence in context: A048796 A213203 A199141 * A239426 A157086 A366306
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Dec 04 2008
STATUS
approved