login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152429
a(n) = (11^n + 5^n)/2.
1
1, 8, 73, 728, 7633, 82088, 893593, 9782648, 107374753, 1179950408, 12973595113, 142680249368, 1569336258673, 17261966423528, 189877968549433, 2088639343496888, 22974941225731393, 252723895719373448
OFFSET
0,2
COMMENTS
Binomial transform of A081343.
Inverse binomial transform of A143079.
FORMULA
a(n) = 16*a(n-1) - 55*a(n-2), with a(0)=1, a(1)=8.
G.f.: (1-8*x)/(1 - 16*x + 55*x^2).
a(n) = Sum_{k=0..n} A098158(n,k)*8^(2k-n)*9^(n-k).
a(n) = ((8 + sqrt(9))^n + (8 - sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
E.g.f.: (exp(11*x) + exp(5*x))/2. - G. C. Greubel, Jan 08 2020
MAPLE
seq( (11^n+5^n)/2, n=0..20); # G. C. Greubel, Jan 08 2020
MATHEMATICA
LinearRecurrence[{16, -55}, {1, 8}, 20] (* G. C. Greubel, Jan 08 2020 *)
PROG
(Magma) [(11^n+5^n)/2: n in [0..20]]; // Vincenzo Librandi, Jun 01 2011
(PARI) vector(21, n, (11^(n-1) + 5^(n-1))/2 ) \\ G. C. Greubel, Jan 08 2020
(Sage) [(11^n+5^n)/2 for n in (0..20)] # G. C. Greubel, Jan 08 2020
(GAP) List([0..20], n-> (11^n+5^n)/2); # G. C. Greubel, Jan 08 2020
CROSSREFS
Cf. A162516.
Sequence in context: A082764 A254150 A024104 * A234281 A176734 A294606
KEYWORD
nonn,less
AUTHOR
Philippe Deléham, Dec 03 2008
STATUS
approved