OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Index entries for linear recurrences with constant coefficients, signature (16,-55).
FORMULA
a(n) = 16*a(n-1) - 55*a(n-2), with a(0)=1, a(1)=8.
G.f.: (1-8*x)/(1 - 16*x + 55*x^2).
a(n) = Sum_{k=0..n} A098158(n,k)*8^(2k-n)*9^(n-k).
a(n) = ((8 + sqrt(9))^n + (8 - sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
E.g.f.: (exp(11*x) + exp(5*x))/2. - G. C. Greubel, Jan 08 2020
MAPLE
seq( (11^n+5^n)/2, n=0..20); # G. C. Greubel, Jan 08 2020
MATHEMATICA
LinearRecurrence[{16, -55}, {1, 8}, 20] (* G. C. Greubel, Jan 08 2020 *)
PROG
(Magma) [(11^n+5^n)/2: n in [0..20]]; // Vincenzo Librandi, Jun 01 2011
(PARI) vector(21, n, (11^(n-1) + 5^(n-1))/2 ) \\ G. C. Greubel, Jan 08 2020
(Sage) [(11^n+5^n)/2 for n in (0..20)] # G. C. Greubel, Jan 08 2020
(GAP) List([0..20], n-> (11^n+5^n)/2); # G. C. Greubel, Jan 08 2020
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Philippe Deléham, Dec 03 2008
STATUS
approved