login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ((9 + sqrt(5))^n + (9 - sqrt(5))^n)/2.
2

%I #13 May 23 2023 15:21:27

%S 1,9,86,864,9016,96624,1054016,11628864,129214336,1442064384,

%T 16136869376,180866755584,2029199527936,22779718078464,

%U 255815761289216,2873425129242624,32279654468386816,362653470608523264

%N a(n) = ((9 + sqrt(5))^n + (9 - sqrt(5))^n)/2.

%C Binomial transform of A152109. - _Philippe Deléham_, Dec 03 2008

%H G. C. Greubel, <a href="/A152261/b152261.txt">Table of n, a(n) for n = 0..950</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18,-76).

%F From _Philippe Deléham_, Dec 03 2008: (Start)

%F a(n) = 18*a(n-1) - 76*a(n-2), n > 1; a(0)=1, a(1)=9.

%F G.f.: (1-9*x)/(1-18*x+76*x^2).

%F a(n) = Sum_{k=0..n} A098158(n,k)*9^(2k-n)*5^(n-k). (End)

%F a(n) = m^n*(ChebyshevU(n, 9/m) - (9/m)*ChebyshevU(n-1, 9/m)), where m = 2*sqrt(19). - _G. C. Greubel_, May 23 2023

%t LinearRecurrence[{18,-76}, {1,9}, 41] (* _G. C. Greubel_, May 23 2023 *)

%o (Magma) Z<x>:= PolynomialRing(Integers()); N<r5>:=NumberField(x^2-5); S:=[ ((9+r5)^n+(9-r5)^n)/2: n in [0..17] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Dec 03 2008

%o (Magma) [n le 2 select 9^(n-1) else 18*Self(n-1) -76*Self(n-2): n in [1..30]]; // _G. C. Greubel_, May 23 2023

%o (SageMath)

%o @CachedFunction

%o def a(n): # a = A152261

%o if (n<2): return 9^n

%o else: return 18*a(n-1) -76*a(n-2)

%o [a(n) for n in range(41)] # _G. C. Greubel_, May 23 2023

%Y Cf. A152109.

%K nonn

%O 0,2

%A Al Hakanson (hawkuu(AT)gmail.com), Dec 01 2008

%E Extended beyond a(6) by _Klaus Brockhaus_, Dec 03 2008