OFFSET
0,2
COMMENTS
All terms are odd, decreasing across rows. Row sums = A000217, the triangular numbers.
From Johannes W. Meijer, Sep 08 2013: (Start)
Triangle read by rows formed from the antidiagonals of triangle A099375.
The alternating row sums equal A098181(n). (End)
LINKS
Nathaniel Johnston, Rows n = 0..200 of irregular triangle, flattened
FORMULA
By columns, odd terms in every column, n-th column starts at row (2*n).
From Johannes W. Meijer, Sep 08 2013: (Start)
T(n, k) = A099375(n-k+1, k-1), n >= 0 and 1 <= k <= 1+floor(n/2).
T(n, k) = A158405(n+1, n-2*k+2). (End)
EXAMPLE
First few rows of the triangle:
1
3
5 1
7 3
9 5 1
11 7 3
13 9 5 1
15 11 7 3
17 13 9 5 1
19 15 11 7 3
21 17 13 9 5 1
...
MAPLE
T := proc(n, k) return 2*n-4*k+5: end: seq(seq(T(n, k), k=1..1+floor(n/2)), n=0..20); # Nathaniel Johnston, May 01 2011
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Gary W. Adamson, Nov 29 2008
EXTENSIONS
Edited by N. J. A. Sloane, Sep 25 2010, following a suggestion from Emeric Deutsch
Offset corrected by Johannes W. Meijer, Sep 07 2013
STATUS
approved