OFFSET
1,2
COMMENTS
Similar to A002828, but only now primitive representations are allowed.
Of course a(n) >= A002828(n).
From Lagrange's theorem, a(n) <= 5 (see also Estermann, Grosswald, Th. 3, p. 176).
Furthermore, it appears (and should be easy to prove) that:
a(n) = 1 iff n=1
a(n) = 2 iff n in A008784\{1}
a(n) = 3 iff n in A151926
a(n) = 4 iff n == 4 or 7 mod 8
a(n) = 5 iff n == 0 mod 8
REFERENCES
Estermann, T., On the representations of a number as a sum of squares, Acta Arith., 45 (1937), 93-125.
E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..1000
N. J. A. Sloane, Fortran program
EXAMPLE
..... n .. a(n) ..<- Numbers when squared add to n ->
-----------------------------------------------------
......1......1......1
......2......2......1......1
......3......3......1......1......1
......4......4......1......1......1......1
......5......2......1......2
......6......3......1......1......2
......7......4......1......1......1......2
......8......5......1......1......1......1......2
......9......3......1......2......2
.....10......2......1......3
.....11......3......1......1......3
.....12......4......1......1......1......3
.....13......2......2......3
.....14......3......1......2......3
.....15......4......1......1......2......3
.....16......5......1......1......1......2......3
.....17......2......1......4
.....18......3......1......1......4
.....19......3......1......3......3
.....20......4......1......1......3......3
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane and Vinay Vaishampayan, Aug 06 2009, Aug 07 2009
STATUS
approved