login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106653
Five-symbol substitution, characteristic polynomial: x^5-x^3-x^2-x-1.
0
1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 1, 2, 3, 4, 4, 5, 1, 2, 3, 4, 2, 3, 4, 5, 2, 3, 4, 5, 3, 4, 5, 1, 2, 3, 4, 4, 5, 1, 2, 3, 4, 2, 3, 4, 5, 5, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 1, 2, 3, 4, 3, 4, 5, 1, 2, 3, 4, 4, 5, 1, 2, 3, 4, 2, 3, 4, 5, 5, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 1, 2, 3, 4, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4
OFFSET
0,2
COMMENTS
Digraph matrix is: {{0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}, {0, 0, 0, 0, 1}, { 1, 1, 1, 1, 0}}
FORMULA
1->{2}, 2->{3}, 3->{4}, 4->{5}, 5->{1, 2, 3, 4}
MATHEMATICA
s[1] = {2}; s[2] = {3}; s[3] = {4}; s[4] = {5}; s[5] = {1, 2, 3, 4}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[15]
CROSSREFS
Sequence in context: A333609 A273149 A151925 * A173524 A049865 A070771
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, May 12 2005
STATUS
approved