

A151914


a(0)=0, a(1)=4; for n>=2, a(n) = (8/3)*(Sum_{i=1..n1} 3^wt(i)) + 4, where wt() = A000120().


3



0, 4, 12, 20, 44, 52, 76, 100, 172, 180, 204, 228, 300, 324, 396, 468, 684, 692, 716, 740, 812, 836, 908, 980, 1196, 1220, 1292, 1364, 1580, 1652, 1868, 2084, 2732, 2740, 2764, 2788, 2860, 2884, 2956, 3028, 3244, 3268, 3340, 3412, 3628, 3700, 3916, 4132, 4780
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Also, total number of "ON" "subcells" at nth stage in two of the four wedges of the "UlamWarburton" twodimensional cellular automaton of A147562, but including the central "ON" cell. Here consider that every "ON" cell contains four "subcells".  Omar E. Pol, Feb 22 2015


LINKS

Table of n, a(n) for n=0..48.
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Index entries for sequences related to cellular automata


FORMULA

a(n) = A079315(2n).
For n>=2, a(n) = 8*A151920(n2) + 4.
a(n) = 4*A151917(n).  Omar E. Pol, Feb 22 2015


CROSSREFS

Cf. A079315, A079317, A147562, A151917, A151920.
Sequence in context: A008092 A316299 A301231 * A087080 A134253 A115106
Adjacent sequences: A151911 A151912 A151913 * A151915 A151916 A151917


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Aug 05 2009, Aug 06 2009


STATUS

approved



