login
A151661
Exponents in g.f. Product_{k>=2} (1 - x^{F_k}) where F_k are the Fibonacci numbers.
2
0, 1, 2, 4, 7, 8, 11, 12, 13, 14, 18, 19, 20, 22, 23, 24, 29, 30, 31, 33, 36, 38, 39, 40, 47, 48, 49, 51, 54, 55, 58, 59, 62, 64, 65, 66, 76, 77, 78, 80, 83, 84, 87, 88, 89, 90, 94, 95, 96, 97, 100, 101, 104, 106, 107, 108, 123, 124, 125, 127, 130, 131, 134, 135, 136, 137, 141, 142
OFFSET
1,3
LINKS
F. Ardila, The Coefficients of a Fibonacci power series, arXiv:math/0409418 [math.CO], 2004.
N. Robbins, Fibonacci Partitions, The Fibonacci Quarterly, 34.4 (1996), pp. 306-313.
Yufei Zhao, The coefficients of a truncated Fibonacci power series, Fib. Q., 46/47 (2008/2009), 53-55.
EXAMPLE
1 - x - x^2 + x^4 + x^7 - x^8 + x^11 - x^12 - x^13 + x^14 + x^18 - x^19 - x^20 + x^22 + x^23 - x^24 + x^29 - x^30 - x^31 + x^33 + x^36 - x^38 - x^39 + x^40 + x^47 - ...
MATHEMATICA
kmax = 150; Exponent[#, x]& /@ List @@ (Product[1 - x^Fibonacci[k], {k, 2, Ceiling[FindRoot[Fibonacci[x] == kmax, {x, 5}][[1, 2]]]}] + O[x]^kmax // Normal) (* Jean-François Alcover, Oct 08 2018 *)
CROSSREFS
Sequence in context: A093701 A045601 A167051 * A094599 A050082 A209864
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 30 2009
STATUS
approved