login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151661
Exponents in g.f. Product_{k>=2} (1 - x^{F_k}) where F_k are the Fibonacci numbers.
2
0, 1, 2, 4, 7, 8, 11, 12, 13, 14, 18, 19, 20, 22, 23, 24, 29, 30, 31, 33, 36, 38, 39, 40, 47, 48, 49, 51, 54, 55, 58, 59, 62, 64, 65, 66, 76, 77, 78, 80, 83, 84, 87, 88, 89, 90, 94, 95, 96, 97, 100, 101, 104, 106, 107, 108, 123, 124, 125, 127, 130, 131, 134, 135, 136, 137, 141, 142
OFFSET
1,3
LINKS
F. Ardila, The Coefficients of a Fibonacci power series, arXiv:math/0409418 [math.CO], 2004.
N. Robbins, Fibonacci Partitions, The Fibonacci Quarterly, 34.4 (1996), pp. 306-313.
Yufei Zhao, The coefficients of a truncated Fibonacci power series, Fib. Q., 46/47 (2008/2009), 53-55.
EXAMPLE
1 - x - x^2 + x^4 + x^7 - x^8 + x^11 - x^12 - x^13 + x^14 + x^18 - x^19 - x^20 + x^22 + x^23 - x^24 + x^29 - x^30 - x^31 + x^33 + x^36 - x^38 - x^39 + x^40 + x^47 - ...
MATHEMATICA
kmax = 150; Exponent[#, x]& /@ List @@ (Product[1 - x^Fibonacci[k], {k, 2, Ceiling[FindRoot[Fibonacci[x] == kmax, {x, 5}][[1, 2]]]}] + O[x]^kmax // Normal) (* Jean-François Alcover, Oct 08 2018 *)
CROSSREFS
Sequence in context: A093701 A045601 A167051 * A094599 A050082 A209864
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 30 2009
STATUS
approved