The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A151597 Number of permutations of 4 indistinguishable copies of 1..n arranged in a circle with exactly 2 adjacent element pairs in decreasing order. 2
 0, 36, 606, 4744, 30850, 186924, 1092966, 6248976, 35154954, 195310900, 1074216814, 5859372696, 31738278546, 170898434364, 915527340150, 4882812495904, 25939941401626, 137329101557316, 724792480462974, 3814697265618600, 20027160644524194, 104904174804679756 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Andrew Howroyd, Table of n, a(n) for n = 1..500 Index entries for linear recurrences with constant coefficients, signature (13,-58,106,-85,25). FORMULA a(n) = n*(2*5^n - 16*n) for n > 1. - Andrew Howroyd, May 04 2020 From Colin Barker, Jul 16 2020: (Start) G.f.: 2*x^2*(18 + 69*x - 523*x^2 + 255*x^3 - 75*x^4) / ((1 - x)^3*(1 - 5*x)^2). a(n) = 13*a(n-1) - 58*a(n-2) + 106*a(n-3) - 85*a(n-4) + 25*a(n-5) for n>6. (End) PROG (Magma) [0] cat [ n*(2*5^n - 16*n) : n in [2..30]]; // Wesley Ivan Hurt, Jul 16 2020 (PARI) a(n) = if(n <= 1, 0, n*(2*5^n - 16*n)) \\ Andrew Howroyd, May 04 2020 (PARI) concat(0, Vec(2*x^2*(18 + 69*x - 523*x^2 + 255*x^3 - 75*x^4) / ((1 - x)^3*(1 - 5*x)^2) + O(x^40))) \\ Colin Barker, Jul 16 2020 CROSSREFS Cf. A151583. Sequence in context: A003841 A226284 A223271 * A263957 A323974 A126926 Adjacent sequences: A151594 A151595 A151596 * A151598 A151599 A151600 KEYWORD nonn,easy AUTHOR R. H. Hardin, May 21 2009 EXTENSIONS Terms a(9) and beyond from Andrew Howroyd, May 04 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 08:56 EST 2022. Contains 358693 sequences. (Running on oeis4.)