|
|
A151583
|
|
Number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly 2 adjacent element pairs in decreasing order.
|
|
6
|
|
|
0, 2, 45, 260, 1115, 4230, 15113, 52232, 176823, 590090, 1948133, 6376716, 20725523, 66960782, 215232705, 688746512, 2195381615, 6973567506, 22082966429, 69735686420, 219667415499, 690383309462, 2165293110905, 6778308873240, 21182215233575, 66088511533850
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x^2*(2 + 27*x - 85*x^2 + 33*x^3 - 9*x^4) / ((1 - x)^3*(1 - 3*x)^2).
a(n) = 9*a(n-1) - 30*a(n-2) + 46*a(n-3) - 33*a(n-4) + 9*a(n-5) for n>6.
(End)
|
|
PROG
|
(PARI) a(n) = if(n <= 1, 0, n*(3^n - 4*n)) \\ Andrew Howroyd, May 04 2020
(PARI) concat(0, Vec(x^2*(2 + 27*x - 85*x^2 + 33*x^3 - 9*x^4) / ((1 - x)^3*(1 - 3*x)^2) + O(x^30))) \\ Colin Barker, Jul 15 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|