login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151508
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, -1), (-1, 0), (-1, 1), (0, -1), (1, -1), (1, 0)}.
1
1, 0, 2, 1, 12, 13, 106, 184, 1167, 2749, 14976, 43184, 214494, 709375, 3334182, 12111401, 55172493, 213825895, 958512287, 3886970215, 17308095926, 72488219249, 322457272822, 1382555862308, 6164246110975, 26897094736460, 120411455688784, 532534766552745, 2395778998202593, 10709328780143584
OFFSET
0,3
LINKS
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
MAPLE
b:= proc(n, x, y) option remember; `if` (n<0 or x<0 or y<0 or n<x, 0, `if` (n=0, `if` (x=0, 1, 0), add (b(n-1, x+d[1], y+d[2]), d=[[-1, -1], [-1, 0], [-1, 1], [0, -1], [1, -1], [1, 0]]))) end: a:= n-> b(n, 0, 0):
seq (a(n), n=0..30); # Alois P. Heinz, Jul 02 2011
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A199930 A278330 A048854 * A164826 A055392 A380051
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved