login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151450
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, 0), (-1, 1), (0, -1), (1, 0), (1, 1)}.
0
1, 0, 4, 5, 34, 98, 458, 1703, 7632, 31222, 139078, 601834, 2692054, 12000298, 54304846, 246205555, 1126480236, 5170553126, 23870651114, 110597543652, 514517316974, 2401300629466, 11243551419878, 52789725198754, 248514184071046, 1172682575616138, 5545963779654358, 26282130844530698
OFFSET
0,3
LINKS
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, ArXiv 0810.4387 [math.CO], 2008.
FORMULA
G.f.: Int(Int(-2+Int(6*(1-9*x)*(1-Int(4*(1-2*x-15*x^2)^(3/2)*((1830*x^5+59*x^4+362*x^3+22*x^2-8*x+3)*(1-4*x^2)*hypergeom([7/4, 9/4],[2],64*x^3*(1+x)/(1-4*x^2)^2)+7*(750*x^4-307*x^3-213*x^2-45*x+11) *x^3*hypergeom([9/4, 11/4],[3],64*x^3*(1+x)/(1-4*x^2)^2))/((1-4*x^2)^(9/2)*(9*x-1)^2*(1+x)),x))/(1-2*x-15*x^2)^(5/2),x),x),x)/(x^2*(x-1)). - Mark van Hoeij, Aug 27 2014
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A244333 A041907 A228662 * A243772 A332316 A243275
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved