login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041907
Denominators of continued fraction convergents to sqrt(475).
2
1, 1, 4, 5, 34, 73, 472, 545, 2107, 2652, 113491, 116143, 461920, 578063, 3930298, 8438659, 54562252, 63000911, 243564985, 306565896, 13119332617, 13425898513, 53397028156, 66822926669, 454334588170, 975492103009, 6307287206224, 7282779309233
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 115598, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: -(x^18 -x^17 +4*x^16 -5*x^15 +34*x^14 -73*x^13 +472*x^12 -545*x^11 +2107*x^10 -2652*x^9 -2107*x^8 -545*x^7 -472*x^6 -73*x^5 -34*x^4 -5*x^3 -4*x^2 -x -1) / ((x^10 -340*x^5 +1)*(x^10 +340*x^5 +1)). - Colin Barker, Nov 27 2013
a(n) = 115598*a(n-10) - a(n-20) for n>19. - Vincenzo Librandi, Dec 27 2013
MATHEMATICA
Denominator[Convergents[Sqrt[475], 30]] (* Vincenzo Librandi, Dec 27 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 115598, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, {1, 1, 4, 5, 34, 73, 472, 545, 2107, 2652, 113491, 116143, 461920, 578063, 3930298, 8438659, 54562252, 63000911, 243564985, 306565896}, 30] (* Harvey P. Dale, Jul 08 2020 *)
PROG
(Magma) I:=[1, 1, 4, 5, 34, 73, 472, 545, 2107, 2652, 113491, 116143, 461920, 578063, 3930298, 8438659, 54562252, 63000911, 243564985, 306565896]; [n le 20 select I[n] else 115598*Self(n-10)-Self(n-20): n in [1..50]]; // Vincenzo Librandi, Dec 27 2013
CROSSREFS
Sequence in context: A376536 A378079 A244333 * A228662 A151450 A243772
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 27 2013
STATUS
approved