login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A151280
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 1), (0, 1), (1, 0)}
0
1, 2, 5, 15, 47, 150, 495, 1672, 5698, 19636, 68470, 240342, 848258, 3012899, 10753669, 38519879, 138501666, 499728140, 1807946861, 6557502077, 23843549009, 86880613032, 317170036587, 1160001218633, 4249640363945, 15591664759190, 57285869534363, 210757677563396, 776332308628500, 2862899274870651
OFFSET
0,2
LINKS
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A308274 A058495 A287275 * A149914 A071735 A148363
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved