login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151266
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, 0), (1, -1), (1, 1)}.
1
1, 1, 3, 7, 19, 49, 139, 379, 1079, 3011, 8681, 24641, 71303, 204359, 594749, 1717871, 5012591, 14552407, 42601285, 124209955, 364300377, 1065449397, 3131483367, 9182889013, 27027421303, 79418096239, 234090990589, 689093244919, 2033346353509, 5994168369289, 17706646341619, 52264890828619
OFFSET
0,3
LINKS
M. Alekseyev, Count the number of words in a set, MathOverflow, 2018.
A. Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, March 28 2013.
Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d’Informatique de Paris Nord, Université Paris 13, December 2017.
Bostan, Alin ; Chyzak, Frédéric; van Hoeij, Mark; Kauers, Manuel; Pech, Lucien Hypergeometric expressions for generating functions of walks with small steps in the quarter plane. Eur. J. Comb. 61, 242-275 (2017)
A. Bostan and M. Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2008-2009.
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
FORMULA
a(n) = Sum_{j=0..[n/2]} Sum_{i=max(j,[(n+1)/2]-j)..n-j} (i-j+1)*(2*(i+j)-n+1)/(i+j+1) * n!/(i+1)!/j!/(n-i-j)!. - Max Alekseyev, Mar 06 2018
G.f.: -(1/(x-1))*(1/2+1/x*Int(x^2/(x+1)^(1/2)/(1-3*x)^(3/2)*(13/2+Int(((1-3*x)/(x+1))^(1/2)*((10-1/x^3)*hypergeom([1/4, 3/4],[1],64*x^4)+6*(8*x^2+1)*(10*x^2-3)*hypergeom([5/4,7/4],[2],64*x^4)),x)),x)). - Mark van Hoeij, Oct 13 2009
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]
PROG
(PARI) { A151266(n) = sum(j=0, n\2, sum(i=max(j, (n+1)\2-j), n-j, (i-j+1)*(2*(i+j)-n+1)/(i+j+1) * n!/(i+1)!/j!/(n-i-j)! )); } \\ Max Alekseyev, Mar 06 2018
CROSSREFS
Sequence in context: A017927 A116903 A298416 * A147234 A171854 A182895
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved