login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A150373
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, -1, 1), (-1, 1, -1), (1, 0, 1), (1, 1, 0)}.
0
1, 2, 7, 23, 95, 355, 1578, 6274, 28892, 119136, 560067, 2365025, 11269227, 48392249, 232747379, 1012038954, 4900368125, 21515650107, 104706189813, 463307727667, 2263448270060, 10079357562618, 49392369093859, 221123954515892, 1086245148195484, 4885083104051388, 24045498438408407, 108561416724584040
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, k, -1 + n] + aux[-1 + i, j, -1 + k, -1 + n] + aux[1 + i, -1 + j, 1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A150370 A150371 A150372 * A150374 A326648 A150375
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved