login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A150372
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 1, -1), (0, 0, 1), (1, 0, 1), (1, 1, -1)}.
0
1, 2, 7, 23, 94, 372, 1601, 6859, 30453, 135845, 616764, 2817542, 12999781, 60321173, 281686783, 1321486207, 6227878448, 29458162344, 139817921161, 665585392406, 3176982885480, 15200786463565, 72890162063702, 350208999904052, 1685662658510866, 8127023245849525, 39241967006575773, 189747828370462283
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, j, -1 + k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, -1 + j, 1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A150369 A150370 A150371 * A150373 A150374 A326648
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved