login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (-1, 1, 1), (0, 0, 1), (1, -1, 0), (1, 1, -1)}.
0

%I #4 Dec 27 2023 18:04:50

%S 1,1,2,6,20,75,294,1185,4948,21134,92195,408762,1835534,8332934,

%T 38172676,176241883,819216675,3830325107,18001210955,84982319068,

%U 402802744351,1916033752814,9143200897213,43755960353773,209941688871396,1009663813004521,4866076882958955,23497615982212419,113668287526782077

%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (-1, 1, 1), (0, 0, 1), (1, -1, 0), (1, 1, -1)}.

%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.

%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]

%K nonn,walk

%O 0,3

%A _Manuel Kauers_, Nov 18 2008