login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A148483
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (-1, 1, 1), (0, 0, 1), (1, -1, 0), (1, 1, -1)}.
0
1, 1, 2, 6, 20, 75, 294, 1185, 4948, 21134, 92195, 408762, 1835534, 8332934, 38172676, 176241883, 819216675, 3830325107, 18001210955, 84982319068, 402802744351, 1916033752814, 9143200897213, 43755960353773, 209941688871396, 1009663813004521, 4866076882958955, 23497615982212419, 113668287526782077
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A150164 A150165 A148482 * A150166 A150167 A150168
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved