login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A148384
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 0), (0, 0, -1), (0, 1, 0), (1, -1, 1)}.
0
1, 1, 2, 5, 16, 50, 160, 541, 1929, 6991, 25666, 95870, 365059, 1406865, 5475056, 21498955, 85224391, 340417424, 1369089644, 5538774047, 22539313700, 92188639792, 378882425805, 1563742897537, 6480473288550, 26954832247850, 112511106274484, 471114947726106, 1978731166785689
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[i, j, 1 + k, -1 + n] + aux[1 + i, j, k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A278274 A148382 A148383 * A148385 A205501 A118973
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved