login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118973
Number of hill-free Dyck paths of semilength n+2 and having length of first descent equal to 2 (a hill in a Dyck path is a peak at level 1).
4
1, 0, 2, 5, 16, 51, 168, 565, 1934, 6716, 23604, 83806, 300154, 1083137, 3934404, 14374413, 52787766, 194746632, 721435884, 2682522918, 10008240456, 37455101382, 140569122624, 528926230530, 1994980278636, 7541234323096
OFFSET
0,3
COMMENTS
Also, for a given j>=2, number of hill-free Dyck paths of semilength n+j and having length of first descent equal to j. a(n)=A000108(n+1)-A000108(n)-[A000957(n+2)-A000957(n+1)]. Columns 2,3,4,... of A118972 (without the initial 0's).
LINKS
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
FORMULA
G.f.: (1-x)*C*F, where F = (1-sqrt(1-4*x))/(x*(3-sqrt(1-4*x)) and C = (1-sqrt(1-4*x))/(2*x) is the Catalan function.
a(n) ~ 5*4^n/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
a(n) = (Sum_{k=0..n-1}((k+2)*(-1)^k*(binomial(2*n-k+1,n-k)/(n+2)-binomial(2*n-k-1,n-k-1)/(n+1))))+(-1)^(n). - Vladimir Kruchinin. Mar 06 2016
D-finite with recurrence +2*(n+2)*a(n) +(-7*n-2)*a(n-1) +2*(-3*n+1)*a(n-2) +(7*n-26)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(2)=2 because we have uu(dd)uudd and uuu(dd)udd, where u=(1,1),d=(1,-1) (the first descents are shown between parentheses).
MAPLE
F:=(1-sqrt(1-4*z))/z/(3-sqrt(1-4*z)): C:=(1-sqrt(1-4*z))/2/z: g:=(1-z)*C*F: gser:=series(g, z=0, 33): seq(coeff(gser, z, n), n=0..28);
A118973List := proc(m) local A, P, n; A := [1, 0]; P := [1, 0];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-2]]);
A := [op(A), P[-1]] od; A end: A118973List(26); # Peter Luschny, Mar 26 2022
MATHEMATICA
CoefficientList[Series[(1-x)*(1-Sqrt[1-4*x])/x/(3-Sqrt[1-4*x])*(1-Sqrt[1-4*x])/2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(Maxima)
a(n):=(sum((k+2)*(-1)^k*(binomial(2*n-k+1, n-k)/(n+2)-binomial(2*n-k-1, n-k-1)/(n+1)), k, 0, n-1))+(-1)^(n); /* Vladimir Kruchinin. Mar 06 2016 */
(PARI) x='x+O('x^25); Vec((1-x)*(1-sqrt(1-4*x))/x/(3-sqrt(1-4*x))*(1-sqrt(1-4*x))/2/x) \\ G. C. Greubel, Feb 08 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 08 2006
STATUS
approved