OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
FORMULA
G.f.: (1-x)*C*F, where F = (1-sqrt(1-4*x))/(x*(3-sqrt(1-4*x)) and C = (1-sqrt(1-4*x))/(2*x) is the Catalan function.
a(n) ~ 5*4^n/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
a(n) = (Sum_{k=0..n-1}((k+2)*(-1)^k*(binomial(2*n-k+1,n-k)/(n+2)-binomial(2*n-k-1,n-k-1)/(n+1))))+(-1)^(n). - Vladimir Kruchinin. Mar 06 2016
D-finite with recurrence +2*(n+2)*a(n) +(-7*n-2)*a(n-1) +2*(-3*n+1)*a(n-2) +(7*n-26)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(2)=2 because we have uu(dd)uudd and uuu(dd)udd, where u=(1,1),d=(1,-1) (the first descents are shown between parentheses).
MAPLE
F:=(1-sqrt(1-4*z))/z/(3-sqrt(1-4*z)): C:=(1-sqrt(1-4*z))/2/z: g:=(1-z)*C*F: gser:=series(g, z=0, 33): seq(coeff(gser, z, n), n=0..28);
A118973List := proc(m) local A, P, n; A := [1, 0]; P := [1, 0];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-2]]);
A := [op(A), P[-1]] od; A end: A118973List(26); # Peter Luschny, Mar 26 2022
MATHEMATICA
CoefficientList[Series[(1-x)*(1-Sqrt[1-4*x])/x/(3-Sqrt[1-4*x])*(1-Sqrt[1-4*x])/2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(Maxima)
a(n):=(sum((k+2)*(-1)^k*(binomial(2*n-k+1, n-k)/(n+2)-binomial(2*n-k-1, n-k-1)/(n+1)), k, 0, n-1))+(-1)^(n); /* Vladimir Kruchinin. Mar 06 2016 */
(PARI) x='x+O('x^25); Vec((1-x)*(1-sqrt(1-4*x))/x/(3-sqrt(1-4*x))*(1-sqrt(1-4*x))/2/x) \\ G. C. Greubel, Feb 08 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 08 2006
STATUS
approved