login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (-1, 0, 1), (0, 0, -1), (0, 1, 0), (1, -1, 0)}.
0

%I #4 Jan 01 2024 00:41:10

%S 1,1,2,5,13,36,111,349,1133,3835,13299,46793,168540,617598,2288874,

%T 8594852,32693547,125485318,485873816,1898627904,7475334190,

%U 29623307282,118180762246,474383981552,1914246196593,7763801604601,31644811150228,129553820197523,532564182968862,2198003199076504

%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (-1, 0, 1), (0, 0, -1), (0, 1, 0), (1, -1, 0)}.

%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.

%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, 1 + j, k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[i, j, 1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]

%K nonn,walk

%O 0,3

%A _Manuel Kauers_, Nov 18 2008