login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A148297
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (-1, 0, 1), (0, 0, -1), (0, 1, 0), (1, -1, 0)}.
0
1, 1, 2, 5, 13, 36, 111, 349, 1133, 3835, 13299, 46793, 168540, 617598, 2288874, 8594852, 32693547, 125485318, 485873816, 1898627904, 7475334190, 29623307282, 118180762246, 474383981552, 1914246196593, 7763801604601, 31644811150228, 129553820197523, 532564182968862, 2198003199076504
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, 1 + j, k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[i, j, 1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A266546 A271272 A148296 * A148298 A148299 A148300
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved