login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, -1, 1), (-1, 1, 1), (0, 1, -1), (1, 0, 0)}.
1

%I #9 Jan 01 2024 00:32:01

%S 1,1,2,4,13,36,110,367,1243,4266,14979,54636,199011,734030,2756839,

%T 10450319,39836796,153059496,593960500,2316916479,9077686257,

%U 35778018898,141845770750,564450779427,2253100544758,9036652220948,36388658308498,146848107101360,594357667427186,2414872472739607

%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, -1, 1), (-1, 1, 1), (0, 1, -1), (1, 0, 0)}.

%H Robert Israel, <a href="/A148240/b148240.txt">Table of n, a(n) for n = 0..200</a>

%H Alin Bostan and Manuel Kauers, <a href="https://arxiv.org/abs/0811.2899">Automatic Classification of Restricted Lattice Walks</a>, arXiv:0811.2899 [math.CO], 2008-2009.

%p Steps:= [[-1, -1, -1], [-1, -1, 1], [-1, 1, 1], [0, 1, -1], [1, 0, 0]]:

%p f:= proc(n, p) option remember;

%p if n <= min(p) then return 5^n fi;

%p add(procname(n-1, t), t=remove(has, map(`+`, Steps, p), -1)); end proc:

%p map(f, [$0..40], [0, 0, 0]); # _Robert Israel_, Apr 11 2019

%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, 1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]

%K nonn,walk

%O 0,3

%A _Manuel Kauers_, Nov 18 2008