login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A148240
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, -1, 1), (-1, 1, 1), (0, 1, -1), (1, 0, 0)}.
1
1, 1, 2, 4, 13, 36, 110, 367, 1243, 4266, 14979, 54636, 199011, 734030, 2756839, 10450319, 39836796, 153059496, 593960500, 2316916479, 9077686257, 35778018898, 141845770750, 564450779427, 2253100544758, 9036652220948, 36388658308498, 146848107101360, 594357667427186, 2414872472739607
OFFSET
0,3
LINKS
Alin Bostan and Manuel Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2008-2009.
MAPLE
Steps:= [[-1, -1, -1], [-1, -1, 1], [-1, 1, 1], [0, 1, -1], [1, 0, 0]]:
f:= proc(n, p) option remember;
if n <= min(p) then return 5^n fi;
add(procname(n-1, t), t=remove(has, map(`+`, Steps, p), -1)); end proc:
map(f, [$0..40], [0, 0, 0]); # Robert Israel, Apr 11 2019
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, 1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A148238 A278281 A148239 * A151354 A148241 A148242
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved