login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147834
Coefficient expansion of the characteristic polynomial of the {3,4,5} simplex matrix: M = {{0, 3, 0}, {0, 0, 4}, {1, 1, 1}}; p(x)=12 + 4 x + x^2 - x^3.
1
1, 1, 5, 21, 53, 197, 661, 2085, 7093, 23365, 76757, 255333, 842741, 2785157, 9220117, 30473637, 100775989, 333311941, 1102099541, 3644659173, 12052800629, 39856631813, 131803744405, 435863879205, 1441358438581, 4766458888261, 15762259193045, 52124396009061
OFFSET
0,3
COMMENTS
The {3,4,5} represents one of the few integer based triangular tilings of the plane by triangles.
FORMULA
p(x)=12 + 4 x + x^2 - x^3; a(n)=coefficient_expansion(-x^3*p(1/x)).
From Colin Barker, Jan 05 2018: (Start)
G.f.: 1 / (1 - x - 4*x^2 - 12*x^3).
a(n) = a(n-1) + 4*a(n-2) + 12*a(n-3) for n>2.
(End)
MATHEMATICA
f[x_] = 12 + 4 x + x^2 - x^3; g[x] = ExpandAll[ -x^3*f[1/x]]; a = Table[SeriesCoefficient[Series[1/g[x], {x, 0, 50}], n], {n, 0, 50}]
LinearRecurrence[{1, 4, 12}, {1, 1, 5}, 30] (* Harvey P. Dale, Jul 16 2023 *)
PROG
(PARI) Vec(1 / (1 - x - 4*x^2 - 12*x^3) + O(x^40)) \\ Colin Barker, Jan 05 2018
CROSSREFS
Sequence in context: A272013 A219219 A272810 * A160378 A201440 A096942
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Nov 14 2008
STATUS
approved