login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096942
Fifth column of (1,5)-Pascal triangle A096940.
3
5, 21, 55, 115, 210, 350, 546, 810, 1155, 1595, 2145, 2821, 3640, 4620, 5780, 7140, 8721, 10545, 12635, 15015, 17710, 20746, 24150, 27950, 32175, 36855, 42021, 47705, 53940, 60760, 68200, 76296, 85085, 94605, 104895, 115995, 127946, 140790, 154570, 169330, 185115
OFFSET
0,1
COMMENTS
If Y is a 5-subset of an n-set X then, for n>=8, a(n-8) is the number of 4-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 08 2007
LINKS
FORMULA
a(n) = (n+20)*binomial(n+3, 3)/4 = 5*b(n) - 4*b(n-1), with b(n) = A000332(n+4) = binomial(n+4, 4).
G.f.: (5-4*x)/(1-x)^5.
a(n) = Sum_{k=1..n} (Sum_{i=1..k} i*(n-k+5)). - Wesley Ivan Hurt, Sep 26 2013
MATHEMATICA
Table[(n + 20) Binomial[n + 3, 3]/4, {n, 0, 100}]
CoefficientList[Series[(5 - 4 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 01 2013 *)
PROG
(Magma) [(n + 20)*Binomial(n + 3, 3) div 4: n in [0..50]]; // Vincenzo Librandi, Oct 01 2013
CROSSREFS
Fourth column: A096941; sixth column: A096943.
Sequence in context: A147834 A160378 A201440 * A365300 A122244 A146854
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 16 2004
STATUS
approved