



3, 5, 11, 13, 35, 37, 43, 45, 131, 133, 139, 141, 163, 165, 171, 173, 515, 517, 523, 525, 547, 549, 555, 557, 643, 645, 651, 653, 675, 677, 683, 685, 2051, 2053, 2059, 2061, 2083, 2085, 2091, 2093, 2179, 2181, 2187, 2189, 2211, 2213, 2219, 2221, 2563, 2565, 2571
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Every odd number m>=9 is a unique sum of the form a(k)+2a(l); moreover this sequence is the unique one with such property. In connection with A103151, note that there is no subsequence T of primes such that every odd number m>=9 is expressible as a unique sum of the form m=p+2q, where p and q are in T. One can prove that if one replaces 9 by any integer x_o>9, the statement remains true (see the Shevelev link).


LINKS

Table of n, a(n) for n=0..50.
Vladimir Shevelev, On Unique Additive Representations of Positive Integers and Some Close Problems, arXiv:0811.0290 [math.NT], 2008.


MATHEMATICA

(* b = A000695 *) b[n_] := If[n==0, 0, If[EvenQ[n], 4 b[n/2] , b[n1]+1]];
a[n_] := 2 b[n] + 3; Table[a[n], {n, 0, 50}] (* JeanFrançois Alcover, Dec 14 2018 *)


PROG

(PARI) a000695(n) = fromdigits(binary(n), 4);
a(n) = 2*a000695(n)+3; \\ Michel Marcus, Dec 13 2018


CROSSREFS

Cf. A000695, A062880, A103151.
Sequence in context: A260224 A105071 A089251 * A006794 A032457 A122564
Adjacent sequences: A147565 A147566 A147567 * A147569 A147570 A147571


KEYWORD

nonn


AUTHOR

Vladimir Shevelev, Nov 07 2008


EXTENSIONS

More terms from Michel Marcus, Dec 13 2018


STATUS

approved



