login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147563
Irregular triangle, T(n, k) = [x^k] p(n, x), where p(n, x) = 4*Sum_{j=0..n} A008292(n+1, j) * (x/2)^j * (1-x/2)^(n-j), read by rows.
1
4, 4, 4, 4, -2, 4, 16, -8, 4, 44, -6, -16, 4, 4, 104, 84, -136, 34, 4, 228, 606, -584, -24, 102, -17, 4, 480, 2832, -1088, -2208, 1488, -248, 4, 988, 11122, 5536, -20840, 8896, 832, -992, 124, 4, 2008, 39772, 74296, -118190, -2144, 51952, -22112, 2764
OFFSET
0,1
FORMULA
T(n, k) = coefficients [x^k]( p(n, x) ), where p(n, x) = 4*Sum_{j=0..n} A008292(n+1, j) * (x/2)^j * (1-x/2)^(n-j).
T(n, k) = round( (-1/2)^(k-2) * Sum_{j=0..k} (-1)^j*binomial(n-j, k-j) * A008292(n+1, j+1) ). - G. C. Greubel, Mar 03 2023
EXAMPLE
Irregular triangle begins as:
4;
4;
4, 4, -2;
4, 16, -8;
4, 44, -6, -16, 4;
4, 104, 84, -136, 34;
4, 228, 606, -584, -24, 102, -17;
4, 480, 2832, -1088, -2208, 1488, -248;
4, 988, 11122, 5536, -20840, 8896, 832, -992, 124;
4, 2008, 39772, 74296, -118190, -2144, 51952, -22112, 2764;
MATHEMATICA
(* First program *)
nmax:= 15;
p[x_, n_]= (1-x)^(n+1)*PolyLog[-n, x]/x;
b= Table[CoefficientList[p[x, n], x], {n, nmax+1}];
F[n_]:= CoefficientList[4*Sum[b[[n+1]][[m+1]]*(x/2)^(n-m)*(1-x/2)^m, {m, 0, n}], x];
T[n_]:= If[IntegerQ[F[n]], F[n], Sign[F[n]]*Abs[Round[F[n] - 1/2]]];
Table[T[n], {n, 0, nmax}]//Flatten
(* Second program *)
A008292[n_, k_]:= Sum[(-1)^j*(k-j)^n*Binomial[n+1, j], {j, 0, k}];
F[n_, k_]:= (-1/2)^(k-2)*Sum[(-1)^j*Binomial[n-j, k-j]*A008292[n+1, j+ 1], {j, 0, k}];
T[n_, k_]:= If[IntegerQ[F[n, k]], F[n, k], Sign[F[n, k]]*Abs[Round[F[n, k] - 1/2]]];
Table[T[n, k], {n, 0, 16}, {k, 0, 2*Floor[n/2]}]//Flatten (* G. C. Greubel, Mar 03 2023 *)
PROG
(Magma)
A008292:= func< n, k | (&+[(-1)^j*Binomial(n+1, j)*(k-j)^n: j in [0..k]]) >;
T:= func< n, k | (-1/2)^(k-2)*(&+[(-1)^j*Binomial(n-j, k-j)*A008292(n+1, j+1): j in [0..k]]) >;
[Floor(T(n, k)): k in [0..2*Floor(n/2)], n in [0..16]]; // G. C. Greubel, Oct 27 2022; Mar 03 2023
(SageMath)
def A008292(n, k): return sum( (-1)^j*binomial(n+1, j)*(k-j)^n for j in range(k+1) )
def A147563(n, k): return floor((-1/2)^(k-2)*sum((-1)^j*binomial(n-j, k-j)*A008292(n+1, j+1) for j in range(k+1)))
flatten([[A147563(n, k) for k in range(2*floor(n/2) + 1)] for n in range(16)]) # G. C. Greubel, Oct 27 2022; Mar 03 2023
CROSSREFS
Cf. A008292.
Sequence in context: A177229 A046595 A046587 * A136213 A088848 A088849
KEYWORD
sign,tabf
AUTHOR
Roger L. Bagula, Nov 07 2008
EXTENSIONS
Edited by G. C. Greubel, Oct 27 2022
STATUS
approved