login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146343
a(n) = smallest number k such that the continued fraction of (1 + sqrt(k))/2 has period n.
3
5, 2, 17, 6, 41, 18, 89, 31, 73, 43, 265, 94, 421, 118, 193, 172, 521, 106, 241, 151, 337, 489, 433, 268, 929, 211, 409, 334, 673, 379, 937, 463, 601, 331, 769, 721, 2297, 619, 1033, 718, 1777, 394, 1753, 604, 1993, 634, 1249, 526, 3649, 694
OFFSET
1,1
MAPLE
A := proc(n) local c; try c := numtheory[cfrac](1/2+sqrt(n)/2, 'periodic', 'quotients') ; RETURN(nops(c[2]) ); catch: RETURN(-1) end try ; end: A146343 := proc(n) for k from 1 do if A(k) = n then RETURN(k); fi; od: end: for n from 1 to 30 do printf("%d, ", A146343(n)) ; od: # R. J. Mathar, Nov 08 2008
MATHEMATICA
nn = 50; t = Table[0, {nn}]; cnt = 0; k = 1; While[cnt < nn, k++; cf = ContinuedFraction[(1 + Sqrt[k])/2]; If[Head[cf[[-1]]] === List, len = Length[cf[[-1]]]; If[len <= nn && t[[len]] == 0, t[[len]] = k; cnt++]]]; t
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 30 2008
EXTENSIONS
a(6) changed to 18, a(25) to 929, a(28) to 334 by R. J. Mathar, Nov 08 2008
Extended by T. D. Noe, Mar 22 2011
STATUS
approved