login
A146335
Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 11.
4
265, 541, 593, 661, 701, 857, 1061, 1109, 1217, 1237, 1709, 1733, 1949, 2333, 2509, 2557, 2957, 3125, 3229, 3677, 3701, 4181, 4373, 4685, 5081, 5237, 5309, 6133, 6425, 6445, 7013, 7025, 8185, 8545, 8693, 9305, 9533, 9553, 10333, 10525, 10853, 10961, 11125, 11141
OFFSET
1,1
COMMENTS
For primes in this sequence see A146356.
LINKS
EXAMPLE
a(4) = 661 because continued fraction of (1+sqrt(661))/2 = 13, 2, 1, 4, 2, 8, 8, 2, 4, 1, 2, 25, 2, 1, 4, 2, 8, 8, 2, 4, 1, 2, 25, 2, 1, 4, 2, 8, 8, 2, 4, 1, 2, 25, 2, 1, 4, 2, 8, 8 ... has period (2, 1, 4, 2, 8, 8, 2, 4, 1, 2, 25) length 11.
MAPLE
A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic', 'quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146335 := proc(n) RETURN(A146326(n) = 11) ; end: for n from 2 to 2000 do if isA146335(n) then printf("%d, ", n) ; fi; od: # R. J. Mathar, Sep 06 2009
MATHEMATICA
Select[Range[10^4], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 11 &] (* Amiram Eldar, Mar 31 2020 *)
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 30 2008
EXTENSIONS
916 removed by R. J. Mathar, Sep 06 2009
More terms from Amiram Eldar, Mar 31 2020
STATUS
approved