login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146334
Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 10.
2
43, 67, 116, 129, 134, 161, 162, 184, 218, 242, 243, 246, 270, 274, 297, 301, 314, 338, 339, 345, 354, 356, 407, 411, 451, 452, 459, 465, 475, 498, 515, 517, 532, 534, 561, 563, 590, 591, 595, 597, 603, 611, 638, 648, 657, 665, 669, 671, 690, 705, 715
OFFSET
1,1
COMMENTS
For primes in this sequence see A146355.
LINKS
EXAMPLE
a(1) = 43 because continued fraction of (1+Sqrt[43])/2 = 3, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, ... has period (1, 3, 1, 1, 12, 1, 1, 3, 1, 5) length 10.
MAPLE
A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic', 'quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146334 := proc(n) RETURN(A146326(n) = 10) ; end: for n from 2 to 715 do if isA146334(n) then printf("%d, ", n) ; fi; od: # R. J. Mathar, Sep 06 2009
MATHEMATICA
cf10Q[n_]:=Module[{s=(1+Sqrt[n])/2, x}, x=If[IntegerQ[s], 1, Length[ ContinuedFraction[ s][[2]]]]; x==10]; Select[Range[750], cf10Q] (* Harvey P. Dale, Sep 22 2015 *)
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 30 2008
EXTENSIONS
284 removed by R. J. Mathar, Sep 06 2009
STATUS
approved