login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146087
a(n) = 3*A146085(n) - 1.
1
2, 11, 20, 83, 92, 101, 164, 173, 182, 731, 740, 749, 812, 821, 830, 893, 902, 911, 1460, 1469, 1478, 1541, 1550, 1559, 1622, 1631, 1640, 6563, 6572, 6581, 6644, 6653, 6662, 6725, 6734, 6743, 7292, 7301, 7310, 7373, 7382, 7391, 7454, 7463, 7472, 8021, 8030, 8039, 8102, 8111, 8120
OFFSET
1,1
COMMENTS
Positive integers such that for every integer m==8 (mod 9) there exists a unique representation of m as a sum of the form a(l)+3a(s).
MATHEMATICA
fQ[n_] := Module[{d = Reverse[IntegerDigits[n, 3]], k = 3, ans = True}, While[k <= Length[d], If[d[[k]] > 0, ans = False]; k += 2]; ans && d[[1]] == 1]; aQ[n_] := Mod[n + 1, 3] == 0 && fQ[(n + 1)/3]; Select[Range[10000], aQ] (* Amiram Eldar, Dec 09 2018 *)
PROG
(PARI) isa(n) = {my(d=Vecrev(digits(n, 3)), k=3); while (k <= #d, if (d[k], return (0)); k += 2; ); d[1] == 1; } \\ A146085
isok(n) = !((n+1) % 3) && isa((n+1)/3); \\ Michel Marcus, Dec 09 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Oct 27 2008
EXTENSIONS
More terms from Michel Marcus, Dec 09 2018
STATUS
approved