login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145868
Number of involutions of length 2n+1 which are invariant under the reverse-complement map and have no decreasing subsequences of length 7.
0
1, 2, 6, 19, 68, 255, 1020, 4221, 18186, 80304, 364476, 1684782, 7944156, 37988379, 184406508, 905147815, 4495346570, 22527055980, 113957354940, 580759868910, 2982724210440, 15414453711930, 80177422383240, 419249099692710, 2204316120027420, 11642676960438000
OFFSET
0,2
FORMULA
a(n) = sum(j,0,n, C(n,j)*C(n-j,floor((n-j)/2))*A000108(floor((j+1)/2)) * A000108(ceiling((j+1)/2))), where C(n,j) = n!/(j!(n-j)!) and A000108(n) = Catalan(n).
Recurrence: (n+3)*(n+4)*(n+5)*(2*n+1)*(2*n+3)*a(n) = 8*(2*n+1)*(5*n^3 + 33*n^2 + 67*n + 45)*a(n-1) + 4*(n-1)*(40*n^4 + 216*n^3 + 326*n^2 + 144*n + 45)*a(n-2) - 288*(n-2)*(n-1)*(n+1)*(2*n+5)*a(n-3) - 144*(n-3)*(n-2)*(n-1)*(2*n+3)*(2*n+5)*a(n-4). - Vaclav Kotesovec, Feb 18 2015
a(n) ~ 6^(n+7/2) / (2 * Pi^(3/2) * n^(7/2)). - Vaclav Kotesovec, Feb 18 2015
MATHEMATICA
Array[Cat, 21, 0]; For[i = 0, i < 21, ++i, Cat[i] = (1/(i + 1))*Binomial[2*i, i]]; Table[Sum[ Binomial[n, j]*Binomial[n - j, Floor[(n - j)/2]]* Cat[Floor[(j + 1)/2]]*Cat[Ceiling[(j + 1)/2]], {j, 0, n}], {n, 0, 15}]
CROSSREFS
Sequence in context: A150102 A150103 A150104 * A376077 A058122 A150105
KEYWORD
nonn
AUTHOR
Eric S. Egge, Oct 22 2008
EXTENSIONS
More terms from Vaclav Kotesovec, Feb 18 2015
STATUS
approved