login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A020988.
2

%I #27 Oct 18 2022 03:29:28

%S 0,2,12,54,224,906,3636,14558,58248,233010,932060,3728262,14913072,

%T 59652314,238609284,954437166,3817748696,15270994818,61083979308,

%U 244335917270,977343669120,3909374676522,15637498706132,62549994824574

%N Partial sums of A020988.

%H Vincenzo Librandi, <a href="/A145766/b145766.txt">Table of n, a(n) for n = 0..1000</a>

%H Hacène Belbachir and El-Mehdi Mehiri, <a href="https://arxiv.org/abs/2210.08657">Enumerating moves in the optimal solution of the Tower of Hanoi</a>, arXiv:2210.08657 [math.CO], 2022.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-9,4).

%F a(n) = Sum_{i=0..n} A020988(i). a(n+1)-a(n)=A020988(n+1).

%F a(n) = 2*(4^(n+1)-3n-4)/9 = 2*A014825(n). - _R. J. Mathar_, Oct 21 2008

%F G.f.: 2*x/((1-x)^2*(1-4*x)). [_Colin Barker_, Jan 11 2012]

%F a(n) = 6*a(n-1)-9*a(n-2)+4*a(n-3), for n>2, with {a(k)}={0,2,12}, k=0,1,2. - _L. Edson Jeffery_, Mar 01 2012

%t lst={}; s=0; Do[s+=(s+=n+s); AppendTo[lst,s],{n,0,5!}]; lst

%t Accumulate[LinearRecurrence[{5,-4},{0,2},30]] (* or *) LinearRecurrence[ {6,-9,4},{0,2,12},30] (* _Harvey P. Dale_, Sep 25 2013 *)

%Y Cf. A014825, A020988.

%K nonn

%O 0,2

%A _Vladimir Joseph Stephan Orlovsky_, Oct 18 2008

%E Edited by _R. J. Mathar_, Oct 21 2008