The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145684 Triangle T(n,k) = 2^(1 + floor((n-1)/2)) * A158893(n,k+1). 1
2, 16, 2, 60, 8, 4, 88, 12, 8, 4, 232, 32, 24, 16, 8, 288, 40, 32, 24, 16, 8, 688, 96, 80, 64, 48, 32, 16, 800, 112, 96, 80, 64, 48, 32, 16, 1824, 256, 224, 192, 160, 128, 96, 64, 32, 2048, 288, 256, 224, 192, 160, 128, 96, 64, 32 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Row sums are 2, 18, 72, 112, 312, 408, 1024, 1248, 2976, 3488, ....
REFERENCES
H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, pp. 159-162.
LINKS
EXAMPLE
The triangle starts in row n=1 with columns 0 <= k < n as:
2;
16, 2;
60, 8, 4;
88, 12, 8, 4;
232, 32, 24, 16, 8;
288, 40, 32, 24, 16, 8;
688, 96, 80, 64, 48, 32, 16;
800, 112, 96, 80, 64, 48, 32, 16;
1824, 256, 224, 192, 160, 128, 96, 64, 32;
2048, 288, 256, 224, 192, 160, 128, 96, 64, 32;
MAPLE
A145684 := proc(n, k) if k = 0 then 7*n-6 ; else n-k; end if; 2^(1+floor((n-1)/2))*% ; end proc: # R. J. Mathar, Sep 02 2011
MATHEMATICA
Clear[e, n, k];
e[n_, 0] := 7*n - 6;
e[n_, k_] := 0 /; k >= n;
e[n_, k_] := (e[n - 1, k]*e[n, k - 1] + 1)/e[n - 1, k - 1];
Table[Table[2^(Floor[(n - 1)/2] + 1)*e[n, k], {k, 0, n - 1}], {n, 1, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A300138 A362884 A217028 * A254637 A197226 A141239
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Description simplified by R. J. Mathar, Sep 02 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 15:18 EDT 2024. Contains 372758 sequences. (Running on oeis4.)