login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145684
Triangle T(n,k) = 2^(1 + floor((n-1)/2)) * A158893(n,k+1).
1
2, 16, 2, 60, 8, 4, 88, 12, 8, 4, 232, 32, 24, 16, 8, 288, 40, 32, 24, 16, 8, 688, 96, 80, 64, 48, 32, 16, 800, 112, 96, 80, 64, 48, 32, 16, 1824, 256, 224, 192, 160, 128, 96, 64, 32, 2048, 288, 256, 224, 192, 160, 128, 96, 64, 32
OFFSET
1,1
COMMENTS
Row sums are 2, 18, 72, 112, 312, 408, 1024, 1248, 2976, 3488, ....
REFERENCES
H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, pp. 159-162.
EXAMPLE
The triangle starts in row n=1 with columns 0 <= k < n as:
2;
16, 2;
60, 8, 4;
88, 12, 8, 4;
232, 32, 24, 16, 8;
288, 40, 32, 24, 16, 8;
688, 96, 80, 64, 48, 32, 16;
800, 112, 96, 80, 64, 48, 32, 16;
1824, 256, 224, 192, 160, 128, 96, 64, 32;
2048, 288, 256, 224, 192, 160, 128, 96, 64, 32;
MAPLE
A145684 := proc(n, k) if k = 0 then 7*n-6 ; else n-k; end if; 2^(1+floor((n-1)/2))*% ; end proc: # R. J. Mathar, Sep 02 2011
MATHEMATICA
Clear[e, n, k];
e[n_, 0] := 7*n - 6;
e[n_, k_] := 0 /; k >= n;
e[n_, k_] := (e[n - 1, k]*e[n, k - 1] + 1)/e[n - 1, k - 1];
Table[Table[2^(Floor[(n - 1)/2] + 1)*e[n, k], {k, 0, n - 1}], {n, 1, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A300138 A362884 A217028 * A254637 A197226 A141239
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Description simplified by R. J. Mathar, Sep 02 2011
STATUS
approved