login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145684 Triangle T(n,k) = 2^(1 + floor((n-1)/2)) * A158893(n,k+1). 1
2, 16, 2, 60, 8, 4, 88, 12, 8, 4, 232, 32, 24, 16, 8, 288, 40, 32, 24, 16, 8, 688, 96, 80, 64, 48, 32, 16, 800, 112, 96, 80, 64, 48, 32, 16, 1824, 256, 224, 192, 160, 128, 96, 64, 32, 2048, 288, 256, 224, 192, 160, 128, 96, 64, 32 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Row sums are 2, 18, 72, 112, 312, 408, 1024, 1248, 2976, 3488, ....

REFERENCES

H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, pp. 159-162.

LINKS

Table of n, a(n) for n=1..55.

EXAMPLE

The triangle starts in row n=1 with columns 0 <= k < n as:

     2;

    16,   2;

    60,   8,   4;

    88,  12,   8,   4;

   232,  32,  24,  16,   8;

   288,  40,  32,  24,  16,   8;

   688,  96,  80,  64,  48,  32,  16;

   800, 112,  96,  80,  64,  48,  32, 16;

  1824, 256, 224, 192, 160, 128,  96, 64, 32;

  2048, 288, 256, 224, 192, 160, 128, 96, 64, 32;

MAPLE

A145684 := proc(n, k) if k = 0 then 7*n-6 ; else n-k; end if; 2^(1+floor((n-1)/2))*% ; end proc: # R. J. Mathar, Sep 02 2011

MATHEMATICA

Clear[e, n, k];

e[n_, 0] := 7*n - 6;

e[n_, k_] := 0 /; k >= n;

e[n_, k_] := (e[n - 1, k]*e[n, k - 1] + 1)/e[n - 1, k - 1];

Table[Table[2^(Floor[(n - 1)/2] + 1)*e[n, k], {k, 0, n - 1}], {n, 1, 10}];

Flatten[%]

CROSSREFS

Sequence in context: A230513 A300138 A217028 * A254637 A197226 A141239

Adjacent sequences:  A145681 A145682 A145683 * A145685 A145686 A145687

KEYWORD

nonn,tabl

AUTHOR

Roger L. Bagula and Gary W. Adamson, Mar 29 2009

EXTENSIONS

Description simplified by R. J. Mathar, Sep 02 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 11:56 EDT 2020. Contains 336276 sequences. (Running on oeis4.)