The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145582 Number of isomorphism classes of rank one toric log del Pezzo surfaces with index L = n. 3
 5, 7, 18, 13, 33, 26, 45, 27, 51, 51, 67, 53, 69, 74, 133, 48, 89, 81, 102, 110, 178, 105, 124, 109, 161, 119, 164, 135, 142, 187, 140, 105, 274, 159, 383, 169, 145, 166, 329, 221, 177, 266, 180, 230, 404, 189, 220, 213, 315, 264, 384, 233, 225, 260, 573, 298 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A145581(n) is the number of toric log del Pezzo surfaces with index L = n. Both are in the table for Theorem 1.2, p. 4 of Kasprzyk, Kreuzer and Nill. LINKS Justus Springer, Table of n, a(n) for n = 1..5000 Andreas Bäuerle, Sharp volume and multiplicity bounds for Fano simplices, arXiv:2308.12719 [math.CO], 2023. Andreas Bäuerle, Classification of Fano simplices Daniel Haettig, Beatrice Hafner, Juergen Hausen and Justus Springer, Del Pezzo surfaces of Picard number one admitting a torus action, arXiv:2207.14790 [math.AG], 2022. [see Proposition 7.1, p. 27] Daniel Hättig, Jürgen Hausen, Justus Springer and Hendrik Süß, Log del Pezzo surfaces with torus action - a searchable database Alexander M. Kasprzyk, Maximilian Kreuzer and Benjamin Nill, On the combinatorial classification of toric log del Pezzo surfaces, LMS J. Comput. Math. 13 (2010) 33-46; arXiv:0810.2207 [math.AG], 2008. Alexander M. Kasprzyk and Benjamin Nill, Chapter 17 Fano polytopes, in: Strings, Gauge Fields, And The Geometry Behind, World Scientific, 2012. See p. 359. CROSSREFS Cf. A145581, A364712. Sequence in context: A248480 A243844 A271656 * A034762 A138919 A345909 Adjacent sequences: A145579 A145580 A145581 * A145583 A145584 A145585 KEYWORD nonn,changed AUTHOR Jonathan Vos Post, Oct 14 2008 EXTENSIONS a(17) from Kasprzyk and Nill (2012) added by Andrey Zabolotskiy, Feb 17 2020 a(18)-a(200) from Haettig, Hafner, Hausen and Springer (2022) added by Justus Springer, Aug 04 2023 a(201)-a(1000) from Bäuerle's data, added by Andrey Zabolotskiy, Oct 01 2023 a(1001)-a(5000) computed using Bäuerle's algorithm, added by Justus Springer, Apr 15 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 08:33 EDT 2024. Contains 371905 sequences. (Running on oeis4.)